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Scattering of Unidirectional Surface Waves*

S. R. SESHADRI~, SENIOR MEMBER, IEEE

Surnmarg-A perfectly conducting plane screen embedded in a

gyrotropic medium is shown to be able to support a unidirectional

surface wave. Such a surface wave is assumed to be incident on the

top of a semi-infinite screen. At the edge the incident power is con-

verted partly into a reflected surface wave which travels on the bot-

tom of the screen and partly into a space wave. The angular distribu-

tion of the radiated energy as well as the power-reflection and the

power-transmission coefficients are evaluated. Total reflection is

shown to occur for a certain band of frequencies.

INTRODLTCTION

I

N RECENT TIMES, interest has arisen in the

study of scattering of electromagnetic waves by

obstacles embedded in anisotropic media. Wave

propagation in a homogeneous anisotropic medium is

more complicated than in a homogeneous isotropic

space since the characteristics of an anisotropic medium,

as the name itself implies, are different in different clirec-

tions. However, in general, there are two categories of

problems of scattering in anisotropic media which are

quite similar to those in isotropic space. The scattering

by cylindrical obstacles in a uniaxially anisotropic

medium constitutes the first category and Felsen [1]

is currently carrying out a systematic investigation of

these problems. To the second category belong certain

two-dimensional problems of scattering by cylindrical

obstacles in a gyrotropic medium for the case in which

the gyrotropic axis is parallel to the generators of the

cylinder and perpendicular to the direction of the in-

cident wave. In this paper, a simple problem belonging

to the second category is investigated.

Consider a perfectly conducting screen of infinite ex-

tent embedded in a gyrotropic medium. A unidirec-

tional surface wave has been shown [2], [3] to be

supported along the screen. This surface wave is a plane

TEM wave having its magnetic vector parallel and its

electric vector perpendicular to the surface of the

screen. The external static magnetic field is parallel to

the direction of the magnetic vector of the sui face wave.

For a given sense of the external magnetic field, the

surface wave travels only in one direction on the top

of the screen and in the opposite direction on the bot-

tom. The directions of propagation of the surface waves

on the top and the bottom of the screen are both re-

versed when the sense of the external magnetic field

is changed.

Such a unidirectional surface wave is assumed to be

incident on the top of a perfectly conducting semi-
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infinite screen embedded in a gyrotropic medium such

that the gyrotropic axis is parallel to the edge of the

screen. The unidirectional surface wave is scattered at

the open end. Part of the power in the incident wave

is carried by the surface wave which travels along the

bottom of the screen in a direction opposite to that of

the incident surface wave. The remainder of the incident

power is carried by the space wave which is excited by

the discontinuity. This problem is formulated in terms

of a Wiener-Hopf integral equation, which is solved

by the well-known function-theoretic methods. Ex-

plicit expressions for the reflection and the transmis-

sion coefficients, which give the proportion of the in-

cident power carried, respectively, by the reflected sur-

face wave and the transmitted space wave, are de-

termined. For certain frequency ranges, the entire power

in the incident surface wave is carried by the reflected

surface wave.
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Consider a perfectly conducting screen of infinite ex-

tent occupying the region — ~ <x< ~, — cc 5 y < ~

and z = O, where x, y and z form a right-hand side rec-

tangular coordinate system (Fig. 1). The entire space

exterior to the screen is filled with a uniform plasma.

A uniform magnetic field is impressed in the positive y

direction throughout the plasma. Only the linear time-

harmonic problem is considered and the harmonic time

dependence e–’”’ is suppressed. Also the treatment is

restricted to the two-dimensional problem for which all

the field components are independent of the y coor-

dinate. For this case the electromagnetic field is sep-

arable into E and H modes. Since unidirectional surface

waves are present only in the case of the E mode, the H

mode will not be considered. For the E mode, only a

GYROTROPIC MEDIuM I

Fig. l—Unidirectional surface wave along an infinite screen.
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single component of the magnetic field, namely Hu, is

present and it can be shown [2] to satisfy the following

wave equation:

[ 1;+++k’ Hu(x,z)=o (1)

where
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In (2), ko is the wave number corresponding to vacuum

and IJO and ~o are the permeability and dielectric con-

stant pertaining to vacuum. Also WP and co. are, re-

spectively, the plasma and the gyromagnetic frequency

of an electron.

The nonvanishing components Ez(x, z) and E.(x, z)

of the electric field may be shown to be given by

(3
E.(”v, z) = – :: i7u(x, z) – ~: ~ II,(X, z)

a f3
E.(x, Z) = : ~. ~v(x, Z) – : ; ~u(2, Z) (3)

In view of (1), it is reasonable to assume the following

solution for H,, (x, z):

-—

Ilui(.r, z) = ~,eik~’+;~i 2–LJ’I’1 (’L)

where

@~ = + v’k’ – k.2 ifk>kz

~k’ – k.’ = + idkz’ – k’ if k < k,. (5)

Since the screen is perfectly conducting, the following

boundary condition has to be satisfied on the surface of

the screen:

It is seen

provided

Writh the

E.(*7 0+) = 0. (6)

that (4) satisfies the boundary condition (6),

el<kz — kzz = f ie2kr

help of (2) and (5), the

for z $ 0. (7)

solution of (7) for kz
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is easily shown to be given by

–l~zlk.= i koticl — for z $0. (8)
~z

Hence, for c,< O, (4) becomes

HV~(~, Z) = H,e~LOV~r-tL01611clJ/”~ for z $0. (9)

It is clear that (9) represents a surface wave for the

range of Q for which el >0. In Fig. 2, a plot of El as a

function of Q is given. An examination of Fig. 2 shows

that El> O in the following frequency ran{ges:

0< f2 <R, ~l+R2<Q<~v (9a)

INote that R is positive. From the expression of e? given

in (2) it is obvious that e~<O for the frequency range

O<Q<R and EZ>O for ~l+R’<f.1< ~. I-t is clear that

the sign of CZwill change if the sense of the external n\ag-

netic field is changed. It is assumed in what follows that

the external magnetic field is in the positive y direction

for the frequencv range O <Q <R and in the negative y

direction for #l+ R2 <Q < cc. As a consequence, e~ is

always negative. Therefore, HU;(X, z), given bv (9),

holds for all Q. For the frequency ranges O <Q <R and

~1 +R2 <Q < cc, (9) represents a surface wave. On the

top (z> O) of the screen, the surface wave travels in the

negative Y direction and on the bottom (z <0) it travels

in the positive .x direction. For the specified orientation

of the external magnetic field a surface wave which

travels in the positive x direction on the top of the screen

and in the negative x direction on the bottom is not

obtainable. The surface waves are, thereiore, unidirec-

tional in character. Since, for the surface wave, Er(x, z)

= O, it is clear that it is a TEM wave with its magnetic

and electric vectors, respectively, parallel and perpen-

dicular to the surface of the screen. The excitation of

these surface waves was discussed in an earlier pa-

per [2].
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Fig. 2—Plot of q and e/q as a function of ft.
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SCATTERING OF THE SURFACE WAVE AT THE OPEN END

It is now desired to examine the effect of terminating

the perfectly conducting screen (O< z < m ) at x =0, on

the surface wave given by (9) when it is incident on the

top (z> O) from x = ~ (Fig. 3). No surface wave can be

supported in the region x <O; also, a surface wave travel-

ing in the positive x direction cannot be supported on

the top of the screen. Hence, the incident surface wave

will be partly reflected back as a surface wave on the

bottom and partly converted into a radiation field.

GYROTROPIC
MEDIuM INCIDENT

PERFECTLY
CONDUCTING \t-
SCREEN

/
REFLECTED
SURFACE WAVE

Fig. 3—Unidirectional surface wa~,e along a semi-infinite screen.

Since only the y component of the magnetic field is

present, the current 1(x) induced on the screen is in the

x direction. When the current term is also included, it

may be shown that 17u(x, z) satisfies the following in-

homogeneous wave equation:

[ 1; +++k’ H.(x, z)

where

(14b)

The branch cuts are defined as in (5).

The transform equation (13) may be solved by a

straightforward application of the Wiener-Hopf pro-

cedure [4]. The result is

(15)

where C is a constant. With the help of (1 1), (14) and

(15), it follows that

In (16), the upper and lower signs hold, respectively, for

z positive or negative. The contour for integration in

(16) is shown in Fig. 4. For x> O, the integral can be

evaluated by closing the contour in the upper half-

plane. For z >0, the residue at the pole ~ = kO~~ is seen

to be zero if the fact that CZ<0 is noted. The contribu-

tion from the pole ~ = — kO~~ is

The solution of (10) is easily shown to be

“s

.

l(x’)HO(lJ [k~(t – *’)2 + Z2](L.V’. (11)
o

Together with (3) it can be shown that, for z = O,

“s

cc

~(X’)~O(’) [k I z – Z’ I ]d.v’. (12)
o

Since the perfectly conducting screen occupies only the

region x >0, the boundary condition (6) holds only

for x> O.

The application of a Fourier transformation

sides of (12) yields

to both

(13)

This gives just the incident surface wave (9). Hence, the

constant C can be determined and it is given by

For z <O, the residue at the pole ~ = – kod~ is zero and

the contribution from the pole ~ = ko ~~ yields the

reflected surface wave to be

where the reflection coefficient 1? is given by

It is desired to calculate the incident power, the power

in the reflected surface wave and the power transmitted

as a space wave, all per unit width of the screen. The

power in the incident surface wave per unit width of the
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Fig. 4—Integration contour. (a)k real. (b),k imaginary.

screen is obtained from the relation

S

.

P, = —i.; Re E(x, z) )< H*(x, z)dz
o

s

m

—~Re— E.;(X, z) Hv’*(.t, Z)dz. (21)
o

With the use of (9) in (3), itis found that

,40
-/%$(x,z) = — ~,e–iko.r~;i-ko (1621/JZI).. (22)

cm< Cl

Together with (9) and (22), (21) yields

In a similar way, the power transmitted

(23)

in the reflected

surface wave per unit width of the screen is

(24)

The reflection coefficient S is, therefore, given by

s=$=]r[’=”
– d;

for k real. (25)

t Cl + V%

The power radiated in the form of a space wave can

be evaluated in the following manner. For this purpose,

it is convenient to introduce the polar coordinates

X=pcoso, z=psin O (26)

and the following transformation:

<=kcosy. (27)

With (26) and (27), (16) reduces to

iiCk2

S(

~z

H,(p, o)=–= –— cosy+isiny
cl )

~Jp ..s (Y–6’) sin ~d.y

“[k,%, – k’Cos’7] [k + k Cos 7]’/’ “ ’28)
For kp>>l, (28) is evaluated by the saddle-point method.

It yields the space wave part as follows:

. #(kP-7r/4). (29)

With (3) and (26) it may easily be shown that, for

kp>> 1,

E@(P, o = – : H.(P, 0). (30)

The outward power flow per unit area per unit length

of the screen at angle O is obtained from (29) and (30) as

- ‘1Cl’F(e)—
167rROJCoe13

(31)

where

(1 – Cos o)
F(e) =

[
l–:cos~o

%2 1
(32)

F(0), given in (32), is defined as the radiation pattern.

The total power PR radiated in the form of space

waves is

s

Zlr

pR = SRpdO =
s

elc]~ 2T
F(0)dO.

16mokcoe18 ~
(33)

o

It can be readily shown that, for F(6) in (32),

s

2%7 27rel
F(0)do = —

o led “
(34)

The use of (18) and (34) in (33) yields, after some sim-

plification,

(35)

The transmission coefficient T, which is defined as the

ratio of the power radiated as a space wave to the

incident power (both per unit width of the screen), is,

therefore,
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It may be verified from (25) and (36) that S+ T = 1,

as it should.

Since (25) and (36) are valid only for k real, it is

pertinent to find out the ranges of Q for which k is real.

It is easily established that Q <R <Qz <Q. From (2),

it is obvious that C/cl >0 only in the frequency ranges

Q <Q <Q and !i20<Q < cc (Fig. 2). Hence, the expressions

for the reflection coefficient, the radiation pattern and

the transmission coefficient, given, respectively, in (25),

(32) and (36), are valid only for Q <Q <Q, and

QS <0< cc. The incident surface wave assumed in (9) is

legitimate only for the frequency ranges defined in (9a).

Therefore, Q is also restricted to these ranges. Within

the stipulated ranges of Cl, c/cl and, hence, k2 are nega-

tive in the ranges 0<0 <fill and Q <Q <% For k purely

imaginary the solution of (13) has to be modified, with

the result in the final solution (15), k should be replaced

by i I k 1. Then it is obvious from (20) and (25) that

S=l (37)

for O <Q <ill and ‘L <Q <Q. When k in (29) is replaced

by iil k 1, itis seen that the space wave is exponentially

damped and, hence, no power is radiated in the form of

a space wave. Hence,

T=O (38)

for O <Q <Q and Q <Q <Q. The power in the incident

surface wave traveling on the top of the screen is

totally reflected as a surface wave which travels on the

bottom of the screen when Q is in the ranges O <Q <Q

and Qz <Cl <%

NLTMERTCAL RESULTS

The reflection and the transmission coefficients are

computed as a function of Q for a particular value of R,

IlaIndy, R = vi. It is seen from an examination of Fig. .5

that the reflection coefficient is unity from O <Q <Q; it

falls off rapidly as Q is increased beyond fll, reaches a

minimum and then increases to unity at Q =R, It

starts again at unity when Q =Qz and remains at that

value for Q up to Q; then it quickly falls to zero as Q

is increased beyond Q. It is obvious that in the fre-

quency ranges for which the reflected surface wave and

the space wave are present, the major portion of the

energy is transmitted as a space wave except for Q very

near !21, R and% For a certain frequency between S21and

R, the transmission coefficient has a maximum and,

in the frequency ranges considerably greater than Q3,

a negligible amount of incident power is reflected as a

surface wave.

The radiation pattern F(d), given in (32), is plotted

in Fig. 6 for R = v’~ and for three values of Q It is

found that the radiation pattern always has a null in

the direction of the screen and a maximum in the

opposite direction. It is found that, for Q > C?a, the

maximum increases very rapidly with Q, as can be seen
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Fig. 5—Reflection and transmission coefficients.

Fig. 6—Radiation pattern.

from the patterns for !J2 = 5 and W =5.5. For example,

when Q =3, the maximum value is nearly 20 times larger

than that for L?= /5.5. The reason for this rapid change

in the maximum in the radiation pattern can be ex-

plained in the following manner. For Q > Lh, the reflec-

tion coefficient S falls off very rapidly as Q is increased

beyond fk Hence, the major portion of the incident

power is transmitted as a space wave. Also, as Q is

increased beyond f23, E2 rapidly decreases to a very

small value. As a consequence, the exponential attenua-

tion in the incident plane wave is rapidly reduced. The

incident wave becomes very nearly a homogeneous plane

wave and, therefore, the total incident power increases

sharply when !2 is increased further. Since the major

portion of the incident power is transmitted as a space
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wave, the maximum in the radiation pattern rises

sharply as Q is increased beyond fl~.
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Attenuation Constant of Lunar Line and

ZXeptate Lunar Line*

A. Y. HU~, MEMBER, IEEE, AND A. ISHIMARU:, SENIOR MEMBER, IEEE

Summary—The attenuation constant a of the lunar line and that cut out section to connect the inner surfaces of the two
of the T-septate lunar line were derived from the average power loss
WL and the average power transfer W~ in each line, that is the ratio,

WL)2 WT. The average power loss and the average power transfer

for the lunar line and for the T-septate lunar line were derived from

their respective field functions. The theoretical attenuation constant

of a typical lunar line is less than 0.7 db/ 100 ft for frequencies greater

than 2000 Mc. The theoretical attenuation constant of a typical T-

septate line is less than 0.9 db/ 100 f t for frequencies greater than

1000 Mc. Experimental measurements of the attenuation constant

of a T-septate lunar line agree with the theoretical value. In the 200

to 2000 Mc frequency band, the lunar line and the T-septate lunar

line offer a compact and light package without an appreciable sacri-

fice in peak power handfing capacity or atl enuation.

INTRODUCTION

T

WO NEW microwave transmission lines, lunar

line and 1“-septate lunar line were developed at

The Boeing Company. The lunar line is an ec-

centric version of Schelkunoff’s coaxial cylinders with a

radial bafflel and is formed by two eccentric circular

metal tubes, which are either con netted with a metal

bar or tangential to each other. The T’-septate or lazy-T

lunar line is a modification of the lunar line and is also

formed by two eccentric circular metal tubes. In the

T-septate lunar line, however, part of the inner tube is

cut out and a vertical metal bar is passed through the

tubes. The outer tube and the bar are made of brass,

but the inner tube is made of copper which maintains

the cylindric form after being cut. A perturbation

method is used to obtain the dominant cutoff wave-

length and the field functions of these lines. 2,3

The main effect of the finite conductivity in the

waveguide will be attenuation caused by the power

loss in the conducting boundaries. The value of this

attenuation may be estimated by the ratio of power loss

per unit length to the average power transferred. For a

good conductor, it is reasonable to assume that the ex-

pression for power transfer derived for the ideal guide

applies well enough to the actual guide, and that power

loss may be computed by taking the current flow of the

ideal guide as flowing in the walls of the actual guide

with a known conductivity.

In this paper, the attenuation constant a of the lunar

line and of the T-septate lunar line are derived from the

average power loss per unit length W& amd the average

power transfer for the lunar line and for the T-septate

lunar line with their respective field functions. The

numerical y calculated dissipative attenuation con-

stants of the T-septate lunar line for different fre-

quencies are consistent with experimented results. Com-
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