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Scatteting of Unidirectional Surface Waves*

S. R. SESHADRI{, SENIOR MEMBER, IEEE

Summary—A perfectly conducting plane screen embedded in a
gyrotropic medium is shown to be able to support a unidirectional
surface wave. Such a sutface wave is assumed to be incident on the
top of a semi-infinite screen. At the edge the incident power is con-~
verted partly into a reflected surface wave which travels on the bot-
tom of the screen and partly into a space wave. The angular distribu-
tion of the radiated energy as well as the power-reflection and the
power-transmission coefficients are evaluated. Total reflection is
shown to occur for a certain band of frequencies.

INTRODUCTION

N RECENT TIMES, interest has arisen in the
]:[ study of scattering of electromagnetic waves by

obstacles embedded in anisotropic media. Wave
propagation in a homogeneous anisotropic medium is
more complicated than in a homogeneous isotropic
space since the characteristics of an anisotropic medium,
as the name itself implies, are different in different direc-
tions. However, in general, there are two categories of
problems of scattering in anisotropic media which are
quite similar to those in isotropic space. The scattering
by cylindrical obstacles in a uniaxially anisotropic
medium constitutes the first category and Felsen [1]
is currently carrying out a systematic investigation of
these problems. To the second category belong certain
two-dimensional problems of scattering by cvlindrical
obstacles in a gyrotropic medium for the case in which
the gyrotropic axis is parallel to the generators of the
cylinder and perpendicular to the direction of the in-
cident wave. In this paper, a simple problem belonging
to the second category is investigated.

Consider a perfectly conducting screen of infinite ex-
tent embedded in a gyrotropic medium. A unidirec-
tional surface wave has been shown [2], [3] to be
supported along the screen. This surface wave is a plane
TEM wave having its magnetic vector parallel and its
electric vector perpendicular to the surface of the
screen. The external static magnetic field is parallel to
the direction of the magnetic vector of the suiface wave.
For a given sense of the external magnetic field, the
surface wave travels only in one direction on the top
of the screen and in the opposite direction on the bot-
tom. The directions of propagation of the surface waves
on the top and the bottom of the screen are both re-
versed when the sense of the external magnetic field
is changed.

Such a unidirectional surface wave is assumed to be
incident on the top of a perfectly conducting semi-
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infinite screen embedded in a gyrotropic medium such
that the gyrotropic axis is parallel to the edge of the
screen. The unidirectional surface wave is scattered at
the open end. Part of the power in the incident wave
is carried by the surface wave which travels along the
bottom of the screen in a direction opposite to that of
the incident surface wave. The remainder of the incident
power is carried by the space wave which is excited by
the discontinuity. This problem is formulated in terms
of a Wiener-Hopf integral equation, which is solved
by the well-known function-theoretic methods. Ex-
plicit expressions for the reflection and the transmis-
sion coefficients, which give the proportion of the in-
cident power carried, respectively, by the reflected sur-
face wave and the transmitted space wave, are de-
termined. For certain frequency ranges, the entire power
in the incident surface wave is carried by the reflected
surface wave.

UNDIRECTIONAL SURFACE WAVES

Consider a perfectly conducting screen of infinite ex-
tent occupying the region —w <x<Lw, —w {y<L®
and =0, where x, y and 2z form a right-hand side rec-
tangular coordinate system (Fig. 1). The entire space
exterior to the screen is filled with a uniform plasma.
A uniform magnetic field is impressed in the positive y
direction throughout the plasma. Only the linear time-
harmonic problem is considered and the harmonic time
dependence et is suppressed. Also the treatment is
restricted to the two-dimensional problem for which all
the field components are independent of the y coor-
dinate. For this case the electromagnetic field is sep-
arable into £ and H modes. Since unidirectional surface
waves are present only in the case of the £ mode, the H
mode will not be considered. For the E mode, only a
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Fig. 1—Unidirectional surface wave along an infinite screen.
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single component of the magnetic field, namely H,, is
present and it can be shown [2] to satisfy the following
wave equation:
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In (2), ko is the wave number corresponding to vacuum
and ug and €, are the permeability and dielectric con-
stant pertaining to vacuum. Also w, and w, are, re-
spectively, the plasma and the gyromagnetic frequency
of an electron.

The nonvanishing components F,(x, z) and E,(x, z)
of the electric field may be shown to be given by

1'61 a9 €a a
Eoy(x,2) = — — — Hy(x,2) — — — Hy(x, 2)
wege 0% wege OX
2.61 () €9 6
Ex,3) = — —Hy(%,2) — —— — Hy(x, 2) (3)
wege 0X wege 0%

In view of (1), it is reasonable to assume the following
solution for H,(x, 2):

H,)i(x,2) = H oot iv/V=ksl ] (4)
where
VE — k= R — k2 ifE>k,
VE— k=4 ivEk: — B ik <k (5)

Since the screen is perfectly conducting, the following
boundary condition has to be satisfied on the surface of
the screen:

E.(x,04) = 0. (6)

It is seen that (4) satisfies the boundary condition (6),
provided
avk: — b = + iek, forz £ 0.

(7)

With the help of (2) and (5), the solution of (7) for &
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is easily shown to be given by

|

kx = i ko\/el for 2 § 0. (8)

€

Hence, for ¢; <0, (4) becomes
H,i(x, 2) = HeFhovarGolallzDMea for 2 < 0. (9)

It is clear that (9) represents a surface wave for the
range of Q for which ¢ >0. In Fig. 2, a plot of ¢ as a
function of Q is given. An examination of Fig. 2 shows
that >0 in the following frequency ranges:
VIFR <2< .

0< Q<R, (9a)

Note that R is positive. From the expression of e given
in (2) it is obvious that e <0 for the frequency range
0<Q<R and >0 for vV1+ R <Q< . It is clear that
the sign of e, will change if the sense of the external mag-
netic field is changed. It is assumed in what follows that
the external magnetic field is in the positive y direction
for the frequency range 0 <Q <R and in the negative y
direction for v/1+R2<Q< . As a consequence, € is
always negative. Therefore, H,!(x, 2), given bv (9),
holds for all Q. For the frequency ranges 0 <Q <R and
VI+RE<Q < o, (9) represents a surface wave. On the
top (2>0) of the screen, the surface wave travels in the
negative x direction and on the bottom (2 <0) it travels
in the positive x direction. For the specified orientation
of the external magnetic field a surface wave which
travels in the positive x direction on the top of the screen
and in the negative x direction on the bottom is not
obtainable. The surface waves are, therelore, unidirec-
tional in character. Since, for the surface wave, E.(x, )
=0, it is clear that it is a TEM wave with its magnetic
and electric vectors, respectively, parallel and perpen-
dicular to the surface of the screen. The excitation of
these surface waves was discussed in an earlier pa-

per [2].
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Fig. 2—Plot of g and e/e as a function of .
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SCATTERING OF THE SURFACE WAVE AT THE OPEN END

It is now desired to examine the effect of terminating
the perfectly conducting screen (0<x< ) at x=0, on
the surface wave given by (9) when it is incident on the
top (2>0) from x= « (Fig. 3). No surface wave can be
supported in the region x <0; also, a surface wave travel-
ing in the positive x direction cannot be supported on
the top of the screen. Hence, the incident surface wave
will be partly reflected back as a surface wave on the
bottom and partly converted into a radiation field.

z
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Fig. 3—Unidirectional surface wave along a semi-infinite screen.

Since only the ¥ component of the magnetic field is
present, the current /(x) induced on the screen is in the
x direction. When the current term is also included, it
may be shown that H,(x, z) satisfies the following in-
homogeneous wave equation:

[62+62+kﬂﬂ( )
957 4%, 3

0x?

- |:i el LT
& dx 9z '

The solution of (10) is easily shown to be

’i €9 6 E)
Hy(x, ) = I(i“ A +~>

€ 0x dz

: f I H® [ E = TEE Rlar. (1)

0

Together with (3) it can be shown that, for =0,

E.(x, 0) ! ( & + k¢? >
7o(x = — — €
’ dwege; \ 0x2 o

-fwz(x')f10<1> [Blx— o] Jdx'. (12)

Since the perfectly conducting screen occupies only the
region x>0, the boundary condition (6) holds only
for «>0.
The application of a Fourier transformation to both
sides of (12) yields
1 (ke?er — §7) _

E.§) = — (13)

2weper
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where
_ 0
E(0) =f E,(x, 0)e~¥vdx (14a)
(%) =f I{x)e¥dzx. (14b)
0

The branch cuts are defined as in (5).

The transform equation (13) may be solved by a
straightforward application of the Wiener-Hopf pro-
cedure [4]. The result is

CvVE—7¢

k02€1 - g—ﬁ <15)

1) =

where C is a constant. With the help of (11), (14) and
(15), it follows that

’LC i €9 P —
me == [ (=% x ivF=p)
47[' —0 €1
ot B2 2l it

. —
(k’er — {OVE+

. (16)

In (16), the upper and lower signs hold, respectively, for
2 positive or negative. The contour for integration in
(16) is shown in Fig. 4. For x>0, the integral can be
evaluated by closing the contour in the upper half-
plane. For z>0, the residue at the pole { = k¢ is seen
to be zero if the fact that es <0 is noted. The contribu-
tion from the pole { = —kyv/¢; is

Cl Egl
2evVE — kv

etk ko (lezlz/ve1)

Hyi(x, 5) =

(17)

This gives just the incident surface wave (9). Hence, the
constant C can be determined and it is given by

C - 2H,e:vE — kv ‘ (18)

| e

For 2 <0, the residue at the pole { = —kO\/E is zero and
the contribution from the pole {=kove vields the
reflected surface wave to be

H, (%, 5) = H,Tehorveitkolain/Ve (19)
where the reflection coefficient T' is given by
VEk — keva
P = L (20)
VEk+ kovea

It is desired to calculate the incident power, the power
in the reflected surface wave and the power transmitted
as a space wave, all per unit width of the screen. The
power in the incident surface wave per unit width of the
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Fig. 4—Integration contour. (a) k real. (b) & imaginary.
screen is obtained from the relation

R:f—w%mEmwxmwﬂﬂ
0

=} Re f E.i(x, ) H*¥(x, 5)dz. (21)
]
With the use of (9) in (3), it is found that
ko L _
Ezz(x’ Z) - Hseﬁbkor\/qfko(lﬂl/\/el)z. (22)
[O1)] €1
Together with (9) and (22), (21) yields
P il (23)
t 4weol ezf

In a similar way, the power transmitted in the reflected
surface wave per unit width of the screen is

EANRNE
P = (24)
4.(,060 I €2 i
The reflection coefficient S is, thereflore, given by
Pr - '\/_
S=~-"=|r]2= ° : for k real.  (25)

F —_—
—Pz €1+'\/_é

The power radiated in the form of a space wave can
be evaluated in the following manner. For this purpose,
it is convenient to introduce the polar coordinates

% = p cos b, %2 = psin6 (26)
and the following transformation:
¢ = kcosvy. @27
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With (26) and (27), (16) reduces to
1Ck? €2 .
Hy(p, 0) = — f — —cosy -+ isiny
4 €
eLkp cos (y—0) Sin d
. yay ) (28)

[ko%er — k2 cos? v|[k + k cos v]12

For kp>>1, (28) is evaluated by the saddle-point method.
It yields the space wave part as follows:

€
<- — 08 0 + 4 sin 6> sin 0

1CR? €1
2/ 2nkp (ko’er — k% cos? 0) (k + kcos 0)/2
. ei(kp—‘lr/4)_ (29)

With (3) and (26) it may easily be shown that, for
ko>>1,

HUR(p7 0) = -

61k '
E¢(p, 0) =~ — —— Hy(p, 0).

WEQE

(30)

The outward power flow per unit area per unit length
of the screen at angle § is obtained from (29) and (30) as

1 ke
S = — Re §-Ep, 6) X H¥(p,6) = —— | Hy(p, ) |?
2 2wege
el C2F(0
_ el clF@) -
16mTpwepe®
where
(1 —cos®)
F(9) = (32)
1 — —cos? 0:|
€1

F(8), given in (32), is defined as the radiation pattern.
The total power PF radiated in the form of space
waves is

el C

21 2T
PR=f SRd0=———f F(0)de. 33
0 p 161rwk€0613 0 ( ) ( )

It can be readily shown that, for F(6) in (32),

2= 27e;
f F(0)do = .
0 €2

The use of (18) and (34) in (33) vields, after some sim-
plification,

9

(34)

| H.|ve
Zweol 621 (&1 + Ve
The transmission coefficient 7", which is defined as the
ratio of the power radiated as a space wave to the

incident power (both per unit width of the screen), is,
therefore,

PE (35)

PE 24/
PL €3 + '\/;

for k& real. (36)
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It may be verified from (25) and (36) that S+71'=1,
as it should.

Since (25) and (36) are valid only for & real, it is
pertinent to find out the ranges of Q for which % is real.
It is easily established that & <R <Q <. From (2),
it is obvious that e¢/e;>0 only in the frequency ranges
0 <Q<Qy and Q<2< o (Fig. 2). Hence, the expressions
for the reflection coefficient, the radiation pattern and
the transmission coefficient, given, respectively, in (23),
(32) and (36), are valid only for &<Q<{k and
Q, <Q < . The incident surface wave assumed in (9) is
legitimate only for the frequency ranges defined in (9a).
Therefore, Q@ is also restricted to these ranges. Within
the stipulated ranges of ©, ¢/e; and, hence, k* are nega-
tive in the ranges 0 <Q < and 2 <Q <. For & purely
imaginary the solution of (13) has to be modified, with
the result in the final solution (15), k should be replaced
by ¢| k| . Then it is obvious from (20) and (25) that

S=1 (37)
for 0<Q < and Q<2 <. When & in (29) is replaced
by 1[ kl, it is seen that the space wave is exponentially
damped and, hence, no power is radiated in the form of
a space wave. Hence,

T7=0 (38)
for 0<Q <, and 2 <Q <Q. The power in the incident
surface wave traveling on the top of the screen is
totally reflected as a surface wave which travels on the
bottom of the screen when € is in the ranges 0 <Q <
and 2 < <.

NuMERICAL RESULTS

The reflection and the transmission coefficients are
computed as a function of & for a particular value of R,
namely, R =+/3. It is seen from an examination of Fig. 5
that the reflection coefficient is unity from 0 <Q <y; it
falls off rapidly as @ is increased beyond &, reaches a
minimum and then increases to unity at =R, It
starts again at unity when 2=, and remains at that
value for @ up to ; then it quickly falls to zero as Q
is increased beyond ;. It is obvious that in the fre-
quency ranges for which the reflected surface wave and
the space wave are present, the major portion of the
energy is transmitted as a space wave except for  very
near , Rand Q. For a certain frequency between £, and
R, the transmission coefficient has a maximum and,
in the frequency ranges considerably greater than £,
a negligible amount of incident power is reflected as a
surface wave.

The radiation pattern F(#), given in (32), is plotted
in Fig. 6 for R=+/3 and for three values of . It is
found that the radiation pattern always has a null in
the direction of the screen and a maximum in the
opposite direction. It is found that, for 2>, the
maximum increases very rapidly with 2, as can be seen
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from the patterns for 22=35 and ©2=35.5. For example,
when Q= 3, the maximum value is nearly 20 times larger
than that for Q= +/5.5. The reason for this rapid change
in the maximum in the radiation pattern can be ex-
plained in the following manner. For 2>, the reflec-
tion coefficient S falls off very rapidly as Q is increased
beyond ;. Hence, the major portion of the incident
power is transmitted as a space wave. Also, as @ is
increased beyond 3, e rapidly decreases to a very
small value. As a consequence, the exponential attenua-
tion in the incident plane wave is rapidly reduced. The
incident wave becomes very nearly a homogeneous plane
wave and, therefore, the total incident power increases
sharply when @ is increased further. Since the major
portion of the incident power is transmitted as a space
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wave, the maximum in the radiation pattern rises
sharply as { is increased beyond ;.
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Attenuation Constant of Lunar Line and
T'-Septate Lunar Line”

A. Y. HUY, MEMBER, IEEE, AND A. ISHIMARUJ, SENTOR MEMBER, IEEE

Summary—The attenuation constant « of the lunar line and that
of the T-septate lunar line were derived from the average power loss
Wy and the average power transfer Wy in each line, that is the ratio,
W./2Wr. The average power loss and the average power transfer
for the lunar line and for the 7-septate lunar line were derived from
their respective field functions. The theoretical attenuation constant
of a typical lunar line is less than 0.7 db/100 ft for frequencies greater
than 2000 Mc. The theoretical attenuation constant of a typical T-
septate line is less than 0.9 db/100 ft for frequencies greater than
1000 Mc. Experimental measurements of the attenuation constant
of a T-septate lunar line agree with the theoretical value. In the 200
to 2000 Mc frequency band, the lunar line and the T-septate lunar
line offer a compact and light package without an appreciable sacri-
fice in peak power handling capacity or attenuation.

INTRODUCTION

WO NEW microwave transmission lines, lunar
Tline and 7-septate lunar line were developed at

The Boeing Company. The lunar line is an ec-
centric version of Schelkunoff’s coaxial cylinders with a
radial baffle! and is formed by two eccentric circular
metal tubes, which are either connected with a metal
bar or tangential to each other. The T-septate or lazy-1
lunar line is a modification of the lunar line and is also
formed by two eccentric circular metal tubes. In the
T-septate lunar line, however, part of the inner tube is
cut out and a vertical metal bar is passed through the
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cut out section to connect the inner surfaces of the two
tubes. The outer tube and the bar are made of brass,
but the inner tube is made of copper which maintains
the cylindric form after being cut. A perturbation
method is used to obtain the dominant cutoff wave-
length and the field functions of these lines.2:?

The main effect of the finite conductivity in the
waveguide will be attenuation caused by the power
loss in the conducting boundaries. The value of this
attenuation may be estimated by the ratio of power loss
per unit length to the average power transferred. For a
good conductor, it is reasonable to assume that the ex-
pression for power transfer derived for the ideal guide
applies well enough to the actual guide, and that power
loss may be computed by taking the current flow of the
ideal guide as flowing in the walls of the actual guide
with a known conductivity.

In this paper, the attenuation constant « of the lunar
line and of the I-septate lunar line are derived from the
average power loss per unit length Wy and the average
power transfer for the lunar line and for the T-septate
lunar line with their respective field functions. The
numerically calculated dissipative attenuation con-
stants of the T-septate lunar line for different fre-
quencies are consistent with experimental results. Com-
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